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Abstract 

Object detection is an important feature of computer science. The benefits 

of object detection is however not limited to someone with a doctorate of 

informatics.  

Instead, object detection is growing deeper and deeper into the common 

parts of the information society, lending a helping hand wherever needed.  

This paper will address one such possibility, namely the help of a  

Haar-cascade classifier. 

The main focus will be on the case study of a vehicle detection and counting 

system and the possibilities it will provide in a semi-enclosed area - both the 

statistical kind and also for the common man. The goal of the system to be 

developed is to further ease and augment the everyday part of our lives. 

 

1.  Introduction and theory 

1.1 Computer vision 

Computer vision is a field of informatics, 

which teaches computers to see. It is a 

way computers gather and interpret 

visual information from the surrounding 

environment [1].  

Usually the image is first processed on 

a lower level to enhance picture quality, 

for example remove noise. Then the 

picture is processed on a higher level, 

for example detecting patterns and 

shapes, and thereby trying to 

determine, what is in the picture [2]. 

1.2  Object detection 

Object detection is commonly referred 

to as a method that is responsible for 

discovering and identifying the 

existence of objects of a certain class. 

An extension of this can be considered 

as a method of image processing to 

identify objects from digital images.  

1.3  Simple detection by colour 

One way to do so, it to simply classify 

objects in images according to colour. 

This is the main variant used in, for 

example, robotic soccer, where 

different teams have assembled their 

robots and go head to head with other 
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teams.  

However, this color-coded approach 

has its downsides. Experiments in the 

international RoboCup competition 

have shown that the lighting conditions 

are extremely detrimental to the 

outcome of the game and even the 

slightest ambient light change can 

prove fatal to the success of one or the 

other team. Participants need to 

recalibrate their systems multiple times 

even on the same field, because of the 

minor ambient light change that occurs 

with the time of day. [3] Of course, this 

type of detection is not suitable for most 

real world applications, just because of 

the constant need for recalibration and 

maintenance. 

1.4  Introduction of Haar-like features 

A more sophisticated method is 

therefore required. One such method 

would be the detection of objects from 

images using features or specific 

structures of the object in question.  

However, there was a problem. 

Working with only image intensities, 

meaning the RGB pixel values in every 

single pixel in the image, made feature 

calculation rather computationally 

expensive and therefore slow on most 

platforms. 

This problem was addressed by the so-

called Haar-like features, developed by 

Viola and Jones on the basis of the 

proposal by Papageorgiou et. al in 

1998.  

A Haar-like feature considers 

neighbouring rectangular regions at a 

specific location in a detection window, 

sums up the pixel intensities in each 

region and calculates the difference 

between these sums. This difference is 

then used to categorize subsections of 

an image. 

An example of this would be the 

detection of human faces. Commonly, 

the areas around the eyes are darker 

than the areas on the cheeks. One 

example of a Haar-like feature for face 

detection is therefore a set of two 

neighbouring rectangular areas above 

the eye and cheek regions. [4] 

1.5  Cascade classifier 

The cascade classifier consists of a list 

of stages, where each stage consists of 

a list of weak learners.  

The system detects objects in question 

by moving a window over the image. 

Each stage of the classifier labels the 

specific region defined by the current 

location of the window as either positive 

or negative – positive meaning that an 

object was found or negative means 

that the specified object was not found 

in the image.  

If the labelling yields a negative result, 

then the classification of this specific 

region is hereby complete and the 

location of the window is moved to the 

next location.  

If the labelling gives a positive result, 

then the region moves of to the next 

stage of classification.  

The classifier yields a final verdict of 

positive, when all the stages, including 

the last one, yield a result, saying that 

the object is found in the image.  
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A true positive means that the object in 

question is indeed in the image and the 

classifier labels it as such – a positive 

result. A false positive means that the 

labelling process falsely determines, 

that the object is located in the image, 

although it is not. A false negative 

occurs when the classifier is unable to 

detect the actual object from the image 

and a true negative means that a non-

object was correctly classifier as not 

being the object in question.  

In order to work well, each stage of the 

cascade must have a low false negative 

rate, because if the actual object is 

classified as a non-object, then the 

classification of that branch stops, with 

no way to correct the mistake made. 

However, each stage can have a 

relatively high false positive rate, 

because even if the n-th stage classifies 

the non-object as actually being the 

object, then this mistake can be fixed in 

n+1-th and subsequent stages of the 

classifier. [5] 

 

 

Image 1: Stages of the cascade classifier 

  

2. Related work 

2.1 PureTech Systems Car Counting 

The system uses images received from 

IP and analog video cameras it to detect 

and count vehicles. Advanced 

background algorithms then filter any 

unnecessary and probable interference, 

such as shadows or lighting changes. 

When an object in detected, special 

filters make sure to minimize the chance 

to count nonvehicle items, for example 

humans and luggage. The finalized 

count is then outputted, based on the 

initial configuration - by floor or special 

zone. 

The video is processed at a central 

monitoring location, which means there 

is no need to make cuts into pavement 

or similarly preinfluence the 

environment in such a way, which is 

commonly needed for inductive loop 

traffic detectors, where the detectors 

need to be placed inside the pavement, 

which is a fairly common method of 

detecting vehicles behind traffic lights. 

One problem with this system is, 

however, that it only detects cars as 

they enter or leave the parking lot. This 

in turn means that there needs to be 

such a camera or counter in front of 

every entrance and exit point, in order 

to ensure that none of the vehicles are 

missed, which means that all these 

cameras need to be bought, installed 

and serviced, which means that the 

specific client will face a possibly 

substantial expenditure in order to keep 

all the devices up and running. [6] 
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2.2 Autonomous Real-time Vehicle 

Detection from a Medium-Level 

UAV 

The primary means for vehicle 

detection make use of multiple 

cascaded Haar classifiers. For the 

application, four separate Haar-

cascade classifiers were trained based 

on sample vehicles categorized into 

four different positional orientation to 

the horizontal line, resulting in the 

clockwise offsets of 0, 45, 90, 135 

degrees. The training set was thereby 

divided into disjoint subsets based on 

the nearest perceived angle of the 

vehicle wheelbase. A separate 

cascaded Haar-classifier was trained 

for each of the subsets.  

The results are subsequently passed 

through a secondary disjunctive 

verification process, which means that a 

vehicle may exist in one or more of the 

input images, if one or more of the 

different orientation specific classifiers 

yields a positive result. The returned set 

of regions are then merged to resolve 

overlaps and output a singular set of 

detections from the inputs. Each region 

is also tested by various logical tests of 

width and height – is it actually probable 

for the image of this size to be a vehicle. 

[7] 

2.3 Monocular Vehicle Detection and 

Tracking 

The system developed involves three 

main steps.  

Firstly, the preliminary car targets are 

generated with Haar-cascade classifier. 

Only the candidates that pass through 

all the stages are classified as positive 

and the ones that are rejected at any 

stage are classified as negative. The 

advantage is that the majority of the 

initial candidates are actually negative 

images, which usually cannot pass the 

first few stages. This early-stage 

rejection thus greatly reduces the 

overall computing time.  

 

Image 2: Car candidates detected by Haar-

cascade 

 

After the first stage is complete, the 

target validation is used, which is based 

on car-light feature. Since there can be 

several false positives within the 

images output by the first stage of the 

system, which comes from the limitation 

of the training set. To reduce the false 

alarm rate, the algorithm uses the 

before mentioned car-light feature. 

Regardless of the shape, texture or 

colour of the vehicle, they all share a 

common feature – they all have red 

lights in the rear. Thereby assuming 

that most of the false positives detected 

by the first stage do not possess such a 

feature, the result can thus be refined. 

Lastly, the results are further refined by 

Kalman tracking of the objects. The 
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main idea of this step is based on a 

three-stage hypothesis tracking. Firstly, 

if a newly detected area appears and 

lasts for more than a certain number of 

steps, a hypothesis of the object is 

generated. Then it is predicted where 

the next location of the object should be. 

If the object is not detected for a certain 

number of frames, the hypothesis is 

discarded. This method can thusly 

eliminate false positives that do not last 

long enough and still keep track of 

objects that are missing for only a short 

period in a detection step. [8] 

3. Object detection using Haar-

cascade classifier 

This section will highlight on the work 

conducted on the author’s research in 

the field of object detection using Haar-

cascade classifier. The experiments 

were conducted mainly on the parking 

lot located on Kivi street side parking lot 

of Raatuse Shopping center. The 

location was chosen mainly for the ease 

of access and security for the hardware 

required to gather information. 

3.1 Hardware 

Initial testing was conducted with Qoltec 

WebCam15QT NightVision 30Mpx USB 

camera. The device was chosen due to 

its alleged high capabilities, especially 

the 30MP camera.  

As it later turned out, the information 

provided was faulty, and the quality of 

the camera was in fact much poorer. 

For this reason, the device was 

replaced with Logitech HD Webcam 

C525 which offered much clearer 

images than its predecessor. 

The camera was programmed to take 

pictures every five minutes, to minimize 

the impact on the storage capacity and 

duplicate images, since the changes 

during five minutes in the parking lot 

were observed to be minimal.  

3.2 Software 

Several programs were developed in 

the course of this paper, ranging from a 

simple convert to grayscale and get size 

of picture to recorder, detector and 

PosCreator. 

3.2.1 Recorder 

Recorder application was a simple 

application which after every 5 minutes 

tries to take a picture. If it can, then a 

picture is saved to a folder of the 

corresponding date with the filename of 

the corresponding time. If it cannot, 

then it simply cuts the connection within 

30 seconds and will simply wait for the 

next 5 minutes. This ensures that if 

there is a problem with taking a picture, 

which would cause the program to 

“freeze”, then it is simply stops the 

program and tries again later, instead of 

potentially waiting until the power runs 

out someone manually stops the 

program. This is a must-have feature is 

such an application, due to the fact that 

several hours’ worth of image gathering 

would be wasted due to any simple 

problem that halts the execution of the 

recorder thread.  

3.2.2 Detector 

The initial design of the detector 

application was quite simplistic. Firstly, 

the detector would load the classifier 
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and determine it is not empty. If it is, 

then it simply exits with an error 

message. Then the image in question is 

loaded and same procedure is followed. 

Then classifier is applied to the image, 

which outputs an array of rectangles, 

which correspond to the detected 

positions of the objects, in this case 

automobiles. The program would then 

draw bright red rectangles in the 

locations of the detections and also add 

a text to the image, which could for 

example identify the classifier used, 

since one classifier would usually detect 

one thing. 

3.2.2.1 Background subtraction 

However, as shown by the testing 

process and the literature, the 

classifiers trained can produce errors – 

either false positives or false negatives, 

as described above.  

In order to minimise the false positive 

rate originating from the imperfections 

of the classifier, an additional layer was 

added to the algorithm, before the 

classifier is applied to the image. This 

layer has additional knowledge of the 

complete background. In this case it 

would be an image of only the parking 

lot and everything that would normally 

be in the parking lot, except for the cars 

themselves. This knowledge can be 

applied to attempt the filtering of the 

background from the image from which 

we would like to detect vehicles. The 

background subtraction type used was 

MOG.  

MOG (abbr. from Mixture of Gaussians) 

is a technique used to model the 

background pixels of an image like a 

mixture of Gaussians of different weight 

that represent the pixel intensity. If a 

match is found for the pixel of the new 

image with one of the Gaussians then 

the point is classified as a background 

pixel. If no match is found, then the pixel 

is classified as the foreground pixel. [9] 

Other algorithms, such as MOG2 were 

considered, but MOG was finally 

chosen due to the simple fact that 

clearer results were obtained by using 

MOG. 

MOG gives us the background mask, so 

in order to apply it to the original picture, 

one would simply need to compute the 

bitwise and between the original image 

and the mask provided. 

MOG is, however, not perfect. If we 

were to just take the mask provided by 

the default MOG background extractor, 

then the output for one image of the 

parking lot would be rather low quality, 

as illustrated on image 3. Although a 

person may differentiate the regions of 

cars in the image, a cascade classifier 

proved unable to properly comprehend 

the regions of cars on a similar image. 

 

Image 3: Output using MOG with default 
parameters 
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3.2.2.2 Background subtraction 

augmentation 

In order to amend this issue, different 

augmenting features had to be used. 

The ones chosen were eroding and 

dilating.  

Dilation is a way to make the bright 

regions of an image to “grow”. As the 

kernel (small matrix used for image 

processing) is scanned over the image, 

the maximal pixel value overlapped by 

the kernel is calculated and the image 

pixel in the anchor point of the kernel 

(usually at the centre of the image) is 

replaced by the maximal value. 

Erosion works similarly to dilation, but 

instead of the maximal, it computes the 

local minimum over the area of the 

kernel, thus making the dark areas of 

the image larger.  

If one were to apply dilation to the mask 

provided by MOG, then the areas of the 

mask which are not zeros would get 

larger, thus improving the overall quality 

of the image.  

This can however raise a new issue, 

namely the fact that the small noisy 

areas present in the original mask could 

grow larger and have a negative effect 

on the provided mask.  

For this reason, the once dilated mask 

is eroded with a kernel with a smaller 

size, so that it would not nullify the result 

provided by the dilating but still reducing 

the amount of noise produced by the 

dilation process, thus providing a 

symbiotic relation between the two 

operations. 

 

Image 4: MOG with dilation and erosion 

The results provided by this sort of 

background filtering were improved. 

Since a lot of the false positives 

provided by the original detections were 

in fact on the background part, such as 

the trees, pavement etc., which is 

always there, then the algorithm 

discarded these areas before the Haar-

cascade classifier would be applied. 

However, the regions created by the 

background removal created additional 

problems, such as the classifier 

mistaking the grey to black regions as 

the positive image. 

3.2.3 Regional merging 

In addition, yet another layer of filtering 

was added, inspired by the 

“Autonomous Real-time Vehicle 

Detection from a Medium-Level UAV” 

article. This layer was added after the 

Haar-cascade has done its work. Since 

it is possible for the classifier to detect 

many parts of a car as several distinct 

cars, the results of the classifier regions 

must be merged. The merge cannot 

however just detect whether the two 

regions have an overlap of any size, 

because the overlap can simply be the 

result of two adjacent cars, which would 

thereby be merged into one result. To 

avoid this unwanted behaviour, the two 

regions are merged only if the 

overlapped area is at least a certain 
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percentage of one of the regions. This 

constant was observed to yield the best 

results if the value was approximately 

40-60%, meaning that if the overlap of 

the two regions made up at least 40-

60% of the overall area of one of the 

regions, then the two regions were 

merged and considered as one region 

from there on. An example of this 

procedure is shown on image 5, where 

green lines denote the original detection 

and the red line the final output of the 

detector. 

 

Image 5: Regional merge in action 

 

Due to the probabilistic nature of the 

Haar-cascade, the false positives may 

also include detection, which logically 

cannot contain an automobile – namely 

when the rectangle identified as a 

positive result is either too large or too 

small. Such a result would seriously 

compromise the result set, because the 

algorithm described for the merging of 

areas would simply merge all these 

areas into one large area. In order to 

avoid this, the results of the Haar-

cascade are first prefiltered, so that 

areas that are too large to contain just a 

single car are removed from the results. 

This size constant was found by 

observing the largest truck that was 

closest to the camera and adding 20% 

to the size.  

3.2.4 Training cascade 

The training of the cascade proved to be 

no easy task. The first necessary bit 

was to gather the images, then create 

samples based on them and finally 

starting the training process. The 

opencv traincascade utility is an 

improvement over its predecessor in 

several aspects, one of them being that 

traincascade allows the training 

process to be multithreaded, which 

reduces the time it takes to finish the 

training of the classifier. This 

multithreaded approach is only applied 

during the precalculation step however, 

so the overall time to train is still quite 

significant, resulting in hours,days and 

weeks of training time. [10, 11, 12]  

Since the training process needs a lot of 

positive and negative input images, 

which may not always be present, then 

a way to circumvent this is to use a tool 

for the creation of such positive images.  

OpenCV built in mode allows to create 

more positive images with distorting the 

original positive image and applying a 

background image. However, it does 

not allow to do this for multiple images. 

By using the Perl script createsamples 

to apply distortions in batch and the 

mergevec tool [11], it is possible to 

create such necessary files for each 

positive input file and then merging the 

outputted files together into one input 

file that OpenCV can understand.  

Another important aspect to consider is 

the number of positives and negatives. 

When executing the command to start 

training, it is required to enter the 

number of positive and negative images 
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that will be used. Special care should be 

taken with these variables, since the 

number of positive images here 

denotes the number of positive images 

to be used on each step of the classifier 

training, which means that if one were 

to specify to use all images on every 

step, then at one point the training 

process would end in an error. This is 

due to the way the training process is 

set up, as described in section 1. The 

process needs to use many different 

images on every stage of the 

classification and if one were to give all 

to the first stage, then there would be no 

images left over for the second stage, 

thus resulting in an error message. [10, 

11, 12] 

The training can result in many types of 

unwanted behaviour. Most common of 

these is either overtraining or 

undertraining of the classifier. An 

undertrained classifier will most likely 

output too many false positives, since 

the training process has not had time to 

properly determine which actually is 

positive and which is not. An output may 

look similar to image 6. 

 

Image 6: Depiction of the results of 

undertrained classifier 

The opposite effect may be observed if 

too many stages are trained, which 

could mean that the classification 

process may determine that even the 

positive objects in the picture are 

actually negative ones, resulting in an 

empty result set. 

Fairly undefined behaviour can occur if 

the number of input images are too low, 

since the training program cannot get 

enough information on the actual object 

to be able to classify it correctly. 

One of the best results obtained in the 

course of this work is depicted on image 

7. As one can observe, the classifier 

does detect some vehicles without any 

problems, but unfortunately also some 

areas of the pavement and some parts 

of grass are also classified as a car. 

Also some cars are not detected as 

standalone cars. 

 

Image 7: Best solution obtained by the 

author 

The time taken to train the classifier to 

detect at this level can be measured in 

days and weeks, rather than hours.  

Since the training process is fairly 

probabilistic, then a lot of work did also 

go into testing the various parameters 

used in this work, from the number of 

input images to the subtle changes in 

the structuring element on the 
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background removal, and verifying 

whether the output improved, 

decreased or remained unchanged.  

For the same reason, unfortunately the 

author of this work was unable to 

produce a proper classifier, which 

would give minimal false positives and 

maximal true positives. 
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