
Object detection using Haar-cascade Classifier

Sander Soo

Institute of Computer Science, University of Tartu

sander92@ut.ee

Abstract

Object detection is an important feature of computer science. The benefits

of object detection is however not limited to someone with a doctorate of

informatics.

Instead, object detection is growing deeper and deeper into the common

parts of the information society, lending a helping hand wherever needed.

This paper will address one such possibility, namely the help of a

Haar-cascade classifier.

The main focus will be on the case study of a vehicle detection and counting

system and the possibilities it will provide in a semi-enclosed area - both the

statistical kind and also for the common man. The goal of the system to be

developed is to further ease and augment the everyday part of our lives.

1. Introduction and theory

1.1 Computer vision

Computer vision is a field of informatics,

which teaches computers to see. It is a

way computers gather and interpret

visual information from the surrounding

environment [1].

Usually the image is first processed on

a lower level to enhance picture quality,

for example remove noise. Then the

picture is processed on a higher level,

for example detecting patterns and

shapes, and thereby trying to

determine, what is in the picture [2].

1.2 Object detection

Object detection is commonly referred

to as a method that is responsible for

discovering and identifying the

existence of objects of a certain class.

An extension of this can be considered

as a method of image processing to

identify objects from digital images.

1.3 Simple detection by colour

One way to do so, it to simply classify

objects in images according to colour.

This is the main variant used in, for

example, robotic soccer, where

different teams have assembled their

robots and go head to head with other

2

teams.

However, this color-coded approach

has its downsides. Experiments in the

international RoboCup competition

have shown that the lighting conditions

are extremely detrimental to the

outcome of the game and even the

slightest ambient light change can

prove fatal to the success of one or the

other team. Participants need to

recalibrate their systems multiple times

even on the same field, because of the

minor ambient light change that occurs

with the time of day. [3] Of course, this

type of detection is not suitable for most

real world applications, just because of

the constant need for recalibration and

maintenance.

1.4 Introduction of Haar-like features

A more sophisticated method is

therefore required. One such method

would be the detection of objects from

images using features or specific

structures of the object in question.

However, there was a problem.

Working with only image intensities,

meaning the RGB pixel values in every

single pixel in the image, made feature

calculation rather computationally

expensive and therefore slow on most

platforms.

This problem was addressed by the so-

called Haar-like features, developed by

Viola and Jones on the basis of the

proposal by Papageorgiou et. al in

1998.

A Haar-like feature considers

neighbouring rectangular regions at a

specific location in a detection window,

sums up the pixel intensities in each

region and calculates the difference

between these sums. This difference is

then used to categorize subsections of

an image.

An example of this would be the

detection of human faces. Commonly,

the areas around the eyes are darker

than the areas on the cheeks. One

example of a Haar-like feature for face

detection is therefore a set of two

neighbouring rectangular areas above

the eye and cheek regions. [4]

1.5 Cascade classifier

The cascade classifier consists of a list

of stages, where each stage consists of

a list of weak learners.

The system detects objects in question

by moving a window over the image.

Each stage of the classifier labels the

specific region defined by the current

location of the window as either positive

or negative – positive meaning that an

object was found or negative means

that the specified object was not found

in the image.

If the labelling yields a negative result,

then the classification of this specific

region is hereby complete and the

location of the window is moved to the

next location.

If the labelling gives a positive result,

then the region moves of to the next

stage of classification.

The classifier yields a final verdict of

positive, when all the stages, including

the last one, yield a result, saying that

the object is found in the image.

3

A true positive means that the object in

question is indeed in the image and the

classifier labels it as such – a positive

result. A false positive means that the

labelling process falsely determines,

that the object is located in the image,

although it is not. A false negative

occurs when the classifier is unable to

detect the actual object from the image

and a true negative means that a non-

object was correctly classifier as not

being the object in question.

In order to work well, each stage of the

cascade must have a low false negative

rate, because if the actual object is

classified as a non-object, then the

classification of that branch stops, with

no way to correct the mistake made.

However, each stage can have a

relatively high false positive rate,

because even if the n-th stage classifies

the non-object as actually being the

object, then this mistake can be fixed in

n+1-th and subsequent stages of the

classifier. [5]

Image 1: Stages of the cascade classifier

2. Related work

2.1 PureTech Systems Car Counting

The system uses images received from

IP and analog video cameras it to detect

and count vehicles. Advanced

background algorithms then filter any

unnecessary and probable interference,

such as shadows or lighting changes.

When an object in detected, special

filters make sure to minimize the chance

to count nonvehicle items, for example

humans and luggage. The finalized

count is then outputted, based on the

initial configuration - by floor or special

zone.

The video is processed at a central

monitoring location, which means there

is no need to make cuts into pavement

or similarly preinfluence the

environment in such a way, which is

commonly needed for inductive loop

traffic detectors, where the detectors

need to be placed inside the pavement,

which is a fairly common method of

detecting vehicles behind traffic lights.

One problem with this system is,

however, that it only detects cars as

they enter or leave the parking lot. This

in turn means that there needs to be

such a camera or counter in front of

every entrance and exit point, in order

to ensure that none of the vehicles are

missed, which means that all these

cameras need to be bought, installed

and serviced, which means that the

specific client will face a possibly

substantial expenditure in order to keep

all the devices up and running. [6]

4

2.2 Autonomous Real-time Vehicle

Detection from a Medium-Level

UAV

The primary means for vehicle

detection make use of multiple

cascaded Haar classifiers. For the

application, four separate Haar-

cascade classifiers were trained based

on sample vehicles categorized into

four different positional orientation to

the horizontal line, resulting in the

clockwise offsets of 0, 45, 90, 135

degrees. The training set was thereby

divided into disjoint subsets based on

the nearest perceived angle of the

vehicle wheelbase. A separate

cascaded Haar-classifier was trained

for each of the subsets.

The results are subsequently passed

through a secondary disjunctive

verification process, which means that a

vehicle may exist in one or more of the

input images, if one or more of the

different orientation specific classifiers

yields a positive result. The returned set

of regions are then merged to resolve

overlaps and output a singular set of

detections from the inputs. Each region

is also tested by various logical tests of

width and height – is it actually probable

for the image of this size to be a vehicle.

[7]

2.3 Monocular Vehicle Detection and

Tracking

The system developed involves three

main steps.

Firstly, the preliminary car targets are

generated with Haar-cascade classifier.

Only the candidates that pass through

all the stages are classified as positive

and the ones that are rejected at any

stage are classified as negative. The

advantage is that the majority of the

initial candidates are actually negative

images, which usually cannot pass the

first few stages. This early-stage

rejection thus greatly reduces the

overall computing time.

Image 2: Car candidates detected by Haar-

cascade

After the first stage is complete, the

target validation is used, which is based

on car-light feature. Since there can be

several false positives within the

images output by the first stage of the

system, which comes from the limitation

of the training set. To reduce the false

alarm rate, the algorithm uses the

before mentioned car-light feature.

Regardless of the shape, texture or

colour of the vehicle, they all share a

common feature – they all have red

lights in the rear. Thereby assuming

that most of the false positives detected

by the first stage do not possess such a

feature, the result can thus be refined.

Lastly, the results are further refined by

Kalman tracking of the objects. The

5

main idea of this step is based on a

three-stage hypothesis tracking. Firstly,

if a newly detected area appears and

lasts for more than a certain number of

steps, a hypothesis of the object is

generated. Then it is predicted where

the next location of the object should be.

If the object is not detected for a certain

number of frames, the hypothesis is

discarded. This method can thusly

eliminate false positives that do not last

long enough and still keep track of

objects that are missing for only a short

period in a detection step. [8]

3. Object detection using Haar-

cascade classifier

This section will highlight on the work

conducted on the author’s research in

the field of object detection using Haar-

cascade classifier. The experiments

were conducted mainly on the parking

lot located on Kivi street side parking lot

of Raatuse Shopping center. The

location was chosen mainly for the ease

of access and security for the hardware

required to gather information.

3.1 Hardware

Initial testing was conducted with Qoltec

WebCam15QT NightVision 30Mpx USB

camera. The device was chosen due to

its alleged high capabilities, especially

the 30MP camera.

As it later turned out, the information

provided was faulty, and the quality of

the camera was in fact much poorer.

For this reason, the device was

replaced with Logitech HD Webcam

C525 which offered much clearer

images than its predecessor.

The camera was programmed to take

pictures every five minutes, to minimize

the impact on the storage capacity and

duplicate images, since the changes

during five minutes in the parking lot

were observed to be minimal.

3.2 Software

Several programs were developed in

the course of this paper, ranging from a

simple convert to grayscale and get size

of picture to recorder, detector and

PosCreator.

3.2.1 Recorder

Recorder application was a simple

application which after every 5 minutes

tries to take a picture. If it can, then a

picture is saved to a folder of the

corresponding date with the filename of

the corresponding time. If it cannot,

then it simply cuts the connection within

30 seconds and will simply wait for the

next 5 minutes. This ensures that if

there is a problem with taking a picture,

which would cause the program to

“freeze”, then it is simply stops the

program and tries again later, instead of

potentially waiting until the power runs

out someone manually stops the

program. This is a must-have feature is

such an application, due to the fact that

several hours’ worth of image gathering

would be wasted due to any simple

problem that halts the execution of the

recorder thread.

3.2.2 Detector

The initial design of the detector

application was quite simplistic. Firstly,

the detector would load the classifier

6

and determine it is not empty. If it is,

then it simply exits with an error

message. Then the image in question is

loaded and same procedure is followed.

Then classifier is applied to the image,

which outputs an array of rectangles,

which correspond to the detected

positions of the objects, in this case

automobiles. The program would then

draw bright red rectangles in the

locations of the detections and also add

a text to the image, which could for

example identify the classifier used,

since one classifier would usually detect

one thing.

3.2.2.1 Background subtraction

However, as shown by the testing

process and the literature, the

classifiers trained can produce errors –

either false positives or false negatives,

as described above.

In order to minimise the false positive

rate originating from the imperfections

of the classifier, an additional layer was

added to the algorithm, before the

classifier is applied to the image. This

layer has additional knowledge of the

complete background. In this case it

would be an image of only the parking

lot and everything that would normally

be in the parking lot, except for the cars

themselves. This knowledge can be

applied to attempt the filtering of the

background from the image from which

we would like to detect vehicles. The

background subtraction type used was

MOG.

MOG (abbr. from Mixture of Gaussians)

is a technique used to model the

background pixels of an image like a

mixture of Gaussians of different weight

that represent the pixel intensity. If a

match is found for the pixel of the new

image with one of the Gaussians then

the point is classified as a background

pixel. If no match is found, then the pixel

is classified as the foreground pixel. [9]

Other algorithms, such as MOG2 were

considered, but MOG was finally

chosen due to the simple fact that

clearer results were obtained by using

MOG.

MOG gives us the background mask, so

in order to apply it to the original picture,

one would simply need to compute the

bitwise and between the original image

and the mask provided.

MOG is, however, not perfect. If we

were to just take the mask provided by

the default MOG background extractor,

then the output for one image of the

parking lot would be rather low quality,

as illustrated on image 3. Although a

person may differentiate the regions of

cars in the image, a cascade classifier

proved unable to properly comprehend

the regions of cars on a similar image.

Image 3: Output using MOG with default
parameters

7

3.2.2.2 Background subtraction

augmentation

In order to amend this issue, different

augmenting features had to be used.

The ones chosen were eroding and

dilating.

Dilation is a way to make the bright

regions of an image to “grow”. As the

kernel (small matrix used for image

processing) is scanned over the image,

the maximal pixel value overlapped by

the kernel is calculated and the image

pixel in the anchor point of the kernel

(usually at the centre of the image) is

replaced by the maximal value.

Erosion works similarly to dilation, but

instead of the maximal, it computes the

local minimum over the area of the

kernel, thus making the dark areas of

the image larger.

If one were to apply dilation to the mask

provided by MOG, then the areas of the

mask which are not zeros would get

larger, thus improving the overall quality

of the image.

This can however raise a new issue,

namely the fact that the small noisy

areas present in the original mask could

grow larger and have a negative effect

on the provided mask.

For this reason, the once dilated mask

is eroded with a kernel with a smaller

size, so that it would not nullify the result

provided by the dilating but still reducing

the amount of noise produced by the

dilation process, thus providing a

symbiotic relation between the two

operations.

Image 4: MOG with dilation and erosion

The results provided by this sort of

background filtering were improved.

Since a lot of the false positives

provided by the original detections were

in fact on the background part, such as

the trees, pavement etc., which is

always there, then the algorithm

discarded these areas before the Haar-

cascade classifier would be applied.

However, the regions created by the

background removal created additional

problems, such as the classifier

mistaking the grey to black regions as

the positive image.

3.2.3 Regional merging

In addition, yet another layer of filtering

was added, inspired by the

“Autonomous Real-time Vehicle

Detection from a Medium-Level UAV”

article. This layer was added after the

Haar-cascade has done its work. Since

it is possible for the classifier to detect

many parts of a car as several distinct

cars, the results of the classifier regions

must be merged. The merge cannot

however just detect whether the two

regions have an overlap of any size,

because the overlap can simply be the

result of two adjacent cars, which would

thereby be merged into one result. To

avoid this unwanted behaviour, the two

regions are merged only if the

overlapped area is at least a certain

8

percentage of one of the regions. This

constant was observed to yield the best

results if the value was approximately

40-60%, meaning that if the overlap of

the two regions made up at least 40-

60% of the overall area of one of the

regions, then the two regions were

merged and considered as one region

from there on. An example of this

procedure is shown on image 5, where

green lines denote the original detection

and the red line the final output of the

detector.

Image 5: Regional merge in action

Due to the probabilistic nature of the

Haar-cascade, the false positives may

also include detection, which logically

cannot contain an automobile – namely

when the rectangle identified as a

positive result is either too large or too

small. Such a result would seriously

compromise the result set, because the

algorithm described for the merging of

areas would simply merge all these

areas into one large area. In order to

avoid this, the results of the Haar-

cascade are first prefiltered, so that

areas that are too large to contain just a

single car are removed from the results.

This size constant was found by

observing the largest truck that was

closest to the camera and adding 20%

to the size.

3.2.4 Training cascade

The training of the cascade proved to be

no easy task. The first necessary bit

was to gather the images, then create

samples based on them and finally

starting the training process. The

opencv traincascade utility is an

improvement over its predecessor in

several aspects, one of them being that

traincascade allows the training

process to be multithreaded, which

reduces the time it takes to finish the

training of the classifier. This

multithreaded approach is only applied

during the precalculation step however,

so the overall time to train is still quite

significant, resulting in hours,days and

weeks of training time. [10, 11, 12]

Since the training process needs a lot of

positive and negative input images,

which may not always be present, then

a way to circumvent this is to use a tool

for the creation of such positive images.

OpenCV built in mode allows to create

more positive images with distorting the

original positive image and applying a

background image. However, it does

not allow to do this for multiple images.

By using the Perl script createsamples

to apply distortions in batch and the

mergevec tool [11], it is possible to

create such necessary files for each

positive input file and then merging the

outputted files together into one input

file that OpenCV can understand.

Another important aspect to consider is

the number of positives and negatives.

When executing the command to start

training, it is required to enter the

number of positive and negative images

9

that will be used. Special care should be

taken with these variables, since the

number of positive images here

denotes the number of positive images

to be used on each step of the classifier

training, which means that if one were

to specify to use all images on every

step, then at one point the training

process would end in an error. This is

due to the way the training process is

set up, as described in section 1. The

process needs to use many different

images on every stage of the

classification and if one were to give all

to the first stage, then there would be no

images left over for the second stage,

thus resulting in an error message. [10,

11, 12]

The training can result in many types of

unwanted behaviour. Most common of

these is either overtraining or

undertraining of the classifier. An

undertrained classifier will most likely

output too many false positives, since

the training process has not had time to

properly determine which actually is

positive and which is not. An output may

look similar to image 6.

Image 6: Depiction of the results of

undertrained classifier

The opposite effect may be observed if

too many stages are trained, which

could mean that the classification

process may determine that even the

positive objects in the picture are

actually negative ones, resulting in an

empty result set.

Fairly undefined behaviour can occur if

the number of input images are too low,

since the training program cannot get

enough information on the actual object

to be able to classify it correctly.

One of the best results obtained in the

course of this work is depicted on image

7. As one can observe, the classifier

does detect some vehicles without any

problems, but unfortunately also some

areas of the pavement and some parts

of grass are also classified as a car.

Also some cars are not detected as

standalone cars.

Image 7: Best solution obtained by the

author

The time taken to train the classifier to

detect at this level can be measured in

days and weeks, rather than hours.

Since the training process is fairly

probabilistic, then a lot of work did also

go into testing the various parameters

used in this work, from the number of

input images to the subtle changes in

the structuring element on the

10

background removal, and verifying

whether the output improved,

decreased or remained unchanged.

For the same reason, unfortunately the

author of this work was unable to

produce a proper classifier, which

would give minimal false positives and

maximal true positives.

11

4. References

[1] “Vallaste e-teatmik,” [Online].

Available:

http://vallaste.ee/index.htm?Ty

pe=UserId&otsing=5027.

[Accessed October 2013].

[2] S. Nagabhushana,

“Introduction,” in Computer

Vision and Image Processing,

New Age International (P) Ltd.,

Publishers, 2005, p. 3.

[3] V. E.-C. Nathan Lovell, “Color

Classification and Object

Recognition for Robotic

Soccer under Variable

Illumination,” Griffith

University.

[4] V. Jones, “Rapid object

detection using a boosted

cascade of simple features,”

Computer Vision and Pattern

Recognition, 2001.

[5] T. M. Inc., “Train a Cascade

Object Detector,” [Online].

Available:

http://www.mathworks.se/help/

vision/ug/train-a-cascade-

object-detector.html#btugex8.

[Accessed Nov 2014].

[6] “Car Counting,” PureTech

Systems, [Online]. Available:

http://www.puretechsystems.c

om/solutions-car-

counting.html. [Accessed Nov

2014].

[7] T. P. Breckon, S. E. Barnes,

M. L. Eichner and K. Wahren,

“Autonomous Real-time

Vehicle Detection from a

Medium-Level UAV,” 2008.

[Online]. Available:

http://breckon.eu/toby/publicati

ons/papers/breckon09uavvehi

cles.pdf. [Accessed Nov

2014].

[8] Y. Wang, “Monocular Vehicle

Detection and Tracking,”

University of California,

[Online]. Available:

http://acsweb.ucsd.edu/~yuw1

76/report/vehicle.pdf.

[Accessed Nov 2014].

[9] T. Bouwmans, F. E. Baf and

B. Vachon, “Background

Modeling using Mixture of

Gaussians for Foreground

Detection - A Survey,”

Bentham Science Publishers,

2008. [Online]. Available:

https://hal.archives-

ouvertes.fr/file/index/docid/338

206/filename/RPCS_2008.pdf.

[10] OpenCV, “Cascade Classifier

Training — OpenCV 2.4.9.0

documentation,” [Online].

Available:

http://docs.opencv.org/doc/use

r_guide/ug_traincascade.html.

[Accessed December 2014].

[11] C. Robin, “Train your own

OpenCV HAAR classifier,”

12

[Online]. Available:

http://coding-

robin.de/2013/07/22/train-

your-own-opencv-haar-

classifier.html. [Accessed

December 2014].

[12] N. Seo, “OpenCV haartraining

(Rapid Object Detection With

A Cascade of Boosted

Classifiers Based on Haar-like

Features),” [Online]. Available:

http://note.sonots.com/SciSoft

ware/haartraining.html.

[Accessed December 2014].

