
Presented By S. M. Masoud Sadrnezhaad

Source:  Michael Koby

Sharif University of Technology

Computer Engineering Department

CHAPTER 1

http://sadrnezhaad.ir/smm






























































































CHAPTER 2

Presented By S. M. Masoud Sadrnezhaad

Source:  Michael Koby

Sharif University of Technology

Computer Engineering Department

http://sadrnezhaad.ir/smm
































http://git-scm.com/book/en/Getting-Started-Installing-Git




Presented By S. M. Masoud Sadrnezhaad

Source:  Michael Koby

Sharif University of Technology

Computer Engineering Department

CHAPTER 3

http://sadrnezhaad.ir/smm
http://sadrnezhaad.ir/smm
































CHAPTER 4

Presented By S. M. Masoud Sadrnezhaad

Source:  Michael Koby

Sharif University of Technology

Computer Engineering Department

http://sadrnezhaad.ir/smm














































Presented By S. M. Masoud Sadrnezhaad

Source:  Michael Koby

Sharif University of Technology

Computer Engineering Department

CHAPTER 5

http://sadrnezhaad.ir/smm


























Sharif University of Technology

Computer Engineering Department

CHAPTER 6

Presented By S. M. Masoud Sadrnezhaad

Let's see in action

http://sadrnezhaad.ir/smm


Initiate Git and It's Files
Working With Changes



# make a new directory and go to project path

> mkdir git_repo

> cd git_repo

# initialize git

> git init

Initialized empty Git repository in /path/to/git/repository/.git/

> ls -a

.  ..  .git

# let's have a deeper look at .git directory
> ls -a .git/

.  ..  branches  config  description  HEAD  hooks  info  objects  refs



# define your name and email address (this config is per machine)

> git config --global user.name "Masoud Sadrnezhaad"

> git config --global user.email smmsadrnezh@gmail.com

# checkout your git config

> git config --list

user.name=Masoud Sadrnezhaad

user.email=smmsadrnezh@gmail.com

credential.helper=cache

core.repositoryformatversion=0

core.filemode=true

core.bare=false

core.logallrefupdates=true



# create and open README.md file with your default system editor.
> vi README.md

# let's write a readme file (with or witout markdown syntax)

# go to insert mode by click "I" one time
# and go back to command mode by Esc. save the file by "wq"

# make sure everything ok.
> ls -a
.  ..  .git  README.md

# check modification and it's level (slide 62) you see modifications at first level.
> git status
nothing added to commit but untracked files present (use "git add" to track)



# level up this file to staged level
> git add README.md

# look at git status. you see changes in staged level.
> git status

# add staged changes to new commit.
# write a meaningful message for your commit.
> git commit -m "added readme file"
[master (root-commit) 021bd57] commit message
 0 files changed
 create mode 100644 README

# look at git status. there is nothing to commit because changes
# are commited.
> git status



# let's take a look at created commits.

> git log

commit 021bd57955b472d8e6979ba71e4907e9f1e3ab8b

Author: Masoud Sadrnezhaad <smmsadrnezh@gmail.com>

Date:   Fri May 1 02:12:46 2015 +0430

    commti message

# final notes:

# it's easier to add and commit at once.

> git commit -am "commit message"

# this command add All files in your project directory

> git add -A



Undoing Things



# adding new modification to previous commits.

> git commit --amend

# you see commit message as it's name in first line.
# uncomment changes you want to ammend to that commit
# then save the file and close the editor.

# you see this modification in your last commit
> git log



# do some modification and stage them.

# now imagine that you want to unstage one of added files.
# to undo "git add"

> git reset HEAD README.md

# undo to last working version of that specific file.
> git checkout -- README.md

# undo to last working commit.
# actually this one reset everything not only one file.

> git reset --hard

HEAD is now at 11d075a commit message



Branching



# see list of all availeble branches.
> git branch
* master

# asterix indicates that HEAD is pointing to master branch.

# let's create a new branch and name it dev
> git branch dev

# HEAD is pointing to last commit of master branch likewise before.
> git branch
  dev
* master

# change HEAD pointer to dev branch.
> git checkout dev
Switched to branch 'dev'



# do some modification and commit them.

> git commit -am "message"
[master 79635ac] message
 1 file changed, 1 insertion(+)

# switch back to master branch.
> git checkout dev
Switched to branch 'dev'

# open recent changed files. changes does not apply becuz
# you are working on master branch and commited to dev branch.

# it's possible to create and switch to new branch at once.
> git checkout -b dev master
# master indicates that new branch is started from master.
# -b used to create it.



# to merge branch dev switch to branch you are going to merge with

> git checkout master

# now merge dev. this remove dev branch automatically
# but it keeps revision history (changelog)

> git merge dev



Remotes



# use .gitignore to indicate which files are not going to pushed 

# into remote repository. you can put it everywhere in your project

# we use ! to exclude some files and dirs and * for all of them.

# use this command when you want to have a local copy

# from remote repository. --bare is used 

> git clone --bare ~/git-repo/

# to clone from github

> git clone git@github.com:smmsadrnezh/repo-name.git

# to see centeral repository url you fetch from or push into

> git remote -v

origin https://github.com/smmsadrnezh/repo-name.git (fetch)

origin https://github.com/smmsadrnezh/repo-name.git (push)



# to push commits
> git push -u origin master

# typing "-u origin master" is only needed at first time.

# to get commits pushed by other collaborators.
# pull is equivalent to run fetch and merge one by one.
> git pull

# fetch get's commits but do'nt merge it.
# use diff command to see differences.
> git fetch origin
> git diff origin/master

# important note: pull everytime you want to push
# merge conflicts when using three way merge



Rebase



# rebasing branches is not a good idea

> git branch
> gitx
> git rebase master



Thank you :)


