CHAPTER 1

Intro to Git & Git Basics

Sharif University of Technology
Computer Engineering Department
Presented By S. M. Masoud Sadrnezhaad
Source: Michael Koby

http://sadrnezhaad.ir/smm

What We'll Cover

® What is Version Control
® Why You Should Use Version Control
® Types of Version Control

® Qverview of How Version Control Works

What is Version Control?

...a system that lets you track
changes in your source code
by “checking in” your code
into the system.

Version Control Allows You To

® Keep track of changes you've made to a project over time

Version Control Allows You To

® Keep track of changes you've made to a project over time

® Create a branch of code to allow you to experiment without
effecting your working program

Version Control Allows You To

® Keep track of changes you've made to a project over time

® Create a branch of code to allow you to experiment without
effecting your working program

® Make collaboration on your projects easier to handle

Version Control Allows You To

Keep track of changes you've made to a project over time

Create a branch of code to allow you to experiment without
effecting your working program

Make collaboration on your projects easier to handle

And many other tasks associated with source code (tagging,
blaming, release branches, etc)

Why You Should Use Version
Control

Why You Should Use Version
Control

® Track Your Changes

Why You Should Use Version
Control

® Track Your Changes

® Get Back to Working Code More Quickly

Why You Should Use Version
Control

® Track Your Changes

® Get Back to Working Code More Quickly

® Easier Collaboration

Why You Should Use Version
Control

® Track Your Changes

® Get Back to Working Code More Quickly

® Easier Collaboration

® Easier Backups

Why You Should Use Version
Control

Track Your Changes

Get Back to Working Code More Quickly
Easier Collaboration

Easier Backups

Sandboxing

Types of Version Control

Types of Version Control

e Centralized

® Distributed

Centralized

Distributed

Available Version Control Systems

Centralized VCS

e CVS

Centralized VCS

e CVS

® Subversion (SVN)

Centralized VCS

o CVS
® Subversion (SVN)

® Team Foundation Server (TFS)

Distributed VCS

e Git

Distributed VCS

e Git

® Mecurial (hg)

Distributed VCS

e Git
® Mecurial (hg)

® Bazaar

Online VCS Hosting

Online VCS Hosting

® Github

Online VCS Hosting

® Github

® Bitbucket

Online VCS Hosting

® Github

® Bitbucket

® Codeplex

How They Work

Next Episode!?

CHAPTER 2

Version Control with Git

Intro to Git & Git Basics

Sharif University of Technology
Computer Engineering Department
Presented By S. M. Masoud Sadrnezhaad
Source: Michael Koby

http://sadrnezhaad.ir/smm

Why Git?

What is Git!?

... a distributed version control system
created by Linus Tovalds, creator of Linux,
to replace BitKeeper as the VCS used
for maintaining the Linux kernel

Design Goals for Git

Design Goals for Git

® Speed

® Simplicity

Design Goals for Git

Speed
Simplicity
Strong support for non-linear development

Ability to handle large projects

What Makes Git Different?

Snapshots, Not Differences

Check-ins Over Time i

- -
s - -E.

- - -

It's All (Mostly) Local

Three Main Stages

Three Main Stages

® Commited

Three Main Stages

® Commited

® Staged

Three Main Stages

e Commited
® Staged

® Modified

Installing Git

http://git-scm.com/book/en/Getting-Started-Installing-Git

http://git-scm.com/book/en/Getting-Started-Installing-Git

Lets Get Started,
Open Your Terminal

CHAPTER 3

Version Control with Git

Branches

Sharif University of Technology
Computer Engineering Department
Presented By S. M. Masoud Sadrnezhaad
Source: Michael Koby

http://sadrnezhaad.ir/smm
http://sadrnezhaad.ir/smm

Git commits are pointers to the
previous commit

C4

iTesting C1)

C4

[{Teasting Cl)

Going Hands On

Merging

C4

iTesting Cl)

C4

iTesting C1)

Fast Forward Merge

C4

{Testing C1)

CHAPTER 4

Version Control With Git

Branches - Part Deux

Sharif University of Technology
Computer Engineering Department
Presented By S. M. Masoud Sadrnezhaad
Source: Michael Koby

http://sadrnezhaad.ir/smm

Fast Forward Merge

C3 C5

{Testing Cl1) {Testing C2)

C5

(Testing CZ)

Three Way Merge
(aka Recursive Merge)

master

AN

development
(long running)

= R =
N

(topic)

development
(long running)

h

-

topic . ﬂ
' o B +——
(topic)

master

hotfix
(topic)

N\

development
(long running)

h

Long Running Branches Stick
Around

Topic Branches Center Around
Features, Bug Fixes, Etc

Merged Back Into a Long Running
Branch

Topic Branches Are Usually
Deleted When You're Done With

Them

Deleting a Branch

git branch -D BRANCHNAME

git branch -D testing

Remote Branches

git push REMOTE BRANCHNAME

Deleting Remote Branches

git push REMOTE :BRANCHNAME

glit push origin :testing

That’'s all folks!

CHAPTER 5

Sharif University of Technology
Computer Engineering Department
Presented By S. M. Masoud Sadrnezhaad
Source: Michael Koby

http://sadrnezhaad.ir/smm

Fast Forward Merge

Three Way Merge
(aka Recursive Merge)

g /7

3 Way Merge
Result

\ _—

Merged Without Rebase

3 Way Merge
Result

\ ——_d

Merged With Rebase

Rebased Commits

Never rebase a public branch!

CHAPTER 6

Let's see in action

Sharif University of Technology
Computer Engineering Department
Presented By S. M. Masoud Sadrnezhaad

http://sadrnezhaad.ir/smm

Initiate Git and It's Files
Working With Changes

make a new directory and go to project path
> mkdir git_repo
> cd git_repo

initialize git
> git init
Initialized empty Git repository in /path/to/git/repository/.git/
> ls —-a
.git

let's have a deeper look at .git directory
> 1s —-a .git/

branches config description HEAD hooks 1info objects refs

define your name and email address (this config is per machine)
> git config —-—-global user.name "Masoud Sadrnezhaad"
> git config —--global user.email smmsadrnezh@gmail.com

checkout your git config

> git config —--list

user .name=Masoud Sadrnezhaad
user.email=smmsadrnezh@gmail.com
credential.helper=cache
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true

=

create and open README.md file with your default system editor.
vi README .md

A\

let's write a readme file (with or witout markdown syntax)

go to insert mode by click "I" one time
and go back to command mode by Esc. save the file by "wqg"

= o

H=

make sure everything ok.
ls —-a
.git README.md

\Y%

check modification and it's level (slide 62) you see modifications
> git status

nothing added to commit but untracked files present (use "git add" to

=

level up this file to staged level
> git add README.md

==

look at git status. you see changes in staged level.
git status

\Y

add staged changes to new commit.
write a meaningful message for your commit.
git commit -m "added readme file"
master (root—-commit) 021bd57] commit message
0 files changed
create mode 100644 README

— V = 3

look at git status. there is nothing to commit because changes
are commited.
> git status

let's take a look at created commits.

> git log

commit 021bd57955b472d8e6979%9ba71e4907e9f1e3ab8b
Author: Masoud Sadrnezhaad <smmsadrnezh@gmail.com>
Date: Fri May 1 02:12:46 2015 +0430

commti message

final notes:

=

it's easier to add and commit at once.
git commit —-am "commit message"

\'%

=

this command add All files in your project directory
git add -A

\'%

Undoing Things

A\

H= H=

V ==

adding new modification to previous commits.

git commit -—--—amend

you see commit message as it's name in first line.
uncomment changes you want to ammend to that commit
then save the file and close the editor.

you see this modification in your last commit
git log

do some modification and stage them.

now imagine that you want to unstage one of added files.
to undo "git add"

H=H= H

\%

git reset HEAD README.md

undo to last working version of that specific file.
git checkout —-- README.md

V 3=

undo to last working commit.
actually this one reset everything not only one file.

H= =

> git reset —--hard

HEAD is now at 11d075a commit message

Branching

see list of all availeble branches.
git branch
master

* V

asterix indicates that HEAD is pointing to master branch.

let's create a new branch and name it dev
git branch dev

V

HEAD is pointing to last commit of master branch likewise before.
git branch

dev

* master

V

change HEAD pointer to dev branch.
> git checkout dev
Switched to branch 'dev'

do some modification and commit them.

> git commit —-am "message"
[master 79635ac] message
1l file changed, 1 insertion(+)

switch back to master branch.
> git checkout dev
Switched to branch 'dev'

#
#
#
>
#
#

open recent changed files. changes does not apply becuz
you are working on master branch and commited to dev branch.

it's possible to create and switch to new branch at once.

git checkout -b dev master
master indicates that new branch is started from master.

-b used to create it.

to merge branch dev switch to branch you are going to merge with

> git checkout master

now merge dev. this remove dev branch automatically
but it keeps revision history (changelog)

> git merge dev

Remotes

H= H= HF

H= H=

A\

#
>

#
>

use .gitignore to indicate which files are not going to pushed
into remote repository. you can put it everywhere in your project
we use ! to exclude some files and dirs and * for all of them.

use this command when you want to have a local copy
from remote repository. —-bare is used
git clone --bare ~/git-repo/

to clone from github
git clone git@github.com:smmsadrnezh/repo-name.git

to see centeral repository url you fetch from or push into
git remote -v

origin https://github.com/smmsadrnezh/repo-name.git (fetch)
origin https://github.com/smmsadrnezh/repo-name.git (push)

to push commits
git push —u origin master

VvV

typing "-u origin master" is only needed at first time.
to get commits pushed by other collaborators.

pull is equivalent to run fetch and merge one by one.

> git pull

fetch get's commits but do'nt merge it.

use diff command to see differences.

> git fetch origin

> git diff origin/master

important note: pull everytime you want to push
merge conflicts when using three way merge

H= H

Rebase

rebasing branches is not a good idea

> git branch
> gitx
> git rebase master

Thank you :)

